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Allen Malony
Center for Supercomputing
Research and Development

1. Introduction

, The goal of program profiling is to provide an accurate characterization of a program's behavior and

performance. Program profiling can have several different meanings depending on the measurements of

interest and the programming environment. Generally, profiling measurements are concerned with collect-

ing information regarding the dynamic execution behavior of the program. The purpose is to help the user

evaluate alternative implementations and to guide program optimizations. NTwo categories of profiling are

commonly defined: counting the number of times a statement or routine is executed, and timing the execu-

tion of statements or routines. For sequentially executing programs, profiling defined in this manner is ade-

quate and implementations are not particularly complex. However, a parallel programming environment

call for an extension to the common profiling approaches to include measurements of dynamic "interac- .

tion" between the concurrent execution threads. Consequently, parallel program profiling is considerably

more complex to implement.

This paper presents an analysis of parallel program profiling for the Cedar multiprocessor and a prel-

iminary functional specification of a parallel program profiling tool, eprof. The standard UNIX profiling

tools serve as a beginning design basis for eprof and their basic functionality is discussed in Section 2. Sec- "-

tion 3 describes the problems with parallel program profiling. In particular, profiling in the Cedar pro-

gram execution environment is analyzed. The initial version of eprof supports routine counting and timing

functionality. The proposed cprof implementation is presented in detail in Section 4. Profiling operations

other than routine counting and timing are interesting for parallel programs. Section 5 briefly describes -,

t This work was supported in part by the National Science Foundation unser Grant Nos. US NSF DCR84-10110 and US
NSF DCR84-06918, the U.S. Department of Energy under Grant No. US DOE DE-FG02-85ER50001, the IBM Donation, and
the Center for Supercomputer Research and Development.
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possible extensions to cprof.

.

2. UNIX Profiling

Profiling in the UNIX operating system performs two basic functions: counting the number of times

a routine is called, and determining routine execution time. The standard profiling tools, prof and gprof, .4

are based on sampled execution time measurements. Profiling tools running under ELXSI UNIX use time -._.

measurement instead of sampling. The following reviews standard UNIX profiling functionality in the con- ".4

text of these two implementations. It is important to realize that these profiling tools are intended for use

with sequentially executing programs.

2.1. Standard Profiling Tools

prof and gprof are the standard profiling tools of the UNIX operating system [GKMc82,83] [UNIX84].

Two types of presentation output are produced by these tools from the profiling measurements. The flat

profile shows all routines called during program execution, with the count of the number of times they

were called and the direct execution time1 . The call graph profile lists each routine, together with informa-

tion about its parent routines and children routines. The flat profile results are augmented with cumula-

tive time for the routine, the number of calls to each descendant, the time inherited from each of its des-

cendants and the fraction of total routine time the descendants' times represent' . Similar results are

shown for the parents of the routine. 4

The profiling measurements needed for routine call counting are easily implemented in standard

profiling; a call to a monitoring routine exists in the prologue of each profiled routine. The monitoring

routine determines the called routine by the return address and increments the call counter for that rou-

tine. In addition to counting the number of times a routine is called, the number of times each arc in the

dynamic call graph is traversed is also recorded. Knowing the identity of the called routine, the monitor- -"-)

The direct execution time for a routine is amount of time spent executing the statements of the routine.

The cumulative routine time is the elapsed time from routine entry to exit.

March 17, 1987
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ing finds the return address of the routine, identifying the calling routine. A call count associated with the

calling arc is incremented.

Timing in prof and gprof is based on sampled execution time. When profiling is enabled, UNIX

updates a histogram of the location of the profiled program's program counter at the end of each interval

timer interrupt (usually 1/60th of a second). Routine execution times are determined from a distribution

of these program counter samples within the program. To determine the amount of time spent in a partic-

ular routine at the end of program execution, i.e. direct execution time, the PC histogram counts for that

routine are summed and multiplied by the interval timer period. Obviously, direct execution times are

subject to statistical sampling errors and can give misleading results.

To determine "cumulative" execution times (direct execution time plus time spent in descendent rou-

tines), the arc call counts are used to calculate the amount of time that should be propagated from descen-

dants to ancestors in the dynamic call graph. Having determined a descendant's cumulative execution .

time, each ancestor is propagated a time equal to the fraction of total calls to the descendant made by the

ancestor times the descendent's cumulative time. The necessary, but possibly incorrect, assumption is that

each call to a routine takes that same amount of time. This assumption, coupled with the statistical

approximation of direct execution time, can produce invalid timing measurements.

2.2. Profiling under ELXSI UNIX

Clearly, the statistical sampling method of measuring execution times systems limits the accuracy of

the standard UNIX profiling tools. This is especially true for high-performance systems whose cycle time

is several orders of magnitude smaller than the sampling period. A more reliable method, such as the one

employed by a profiling tool under ELXSI UNDC [Carr841, measures the execution time of a routine by

measuring elapsed time from routine entry to routine exit. Normally, such a time measurement would be ,"

complicated by the time-slicing of a program, but the ELXSI system maintains a 64-bit per-process timer

through hardware and microcode, that is initialised at process start-up and is incremented every 25 . _

nanoseconds when the process is executing. The ELXSI profiling provides functionality equivalent to prof

March 17, 1887 / A,
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and gprof but with measured execution times.

The important implementation point to notice is that execution times can be measured exactly and

assumptions about the time spent in a routine call are unnecessary. There is no need to keep a PC histo-

gram and cumulative execution time can be measured without counting arc traversals or generating

dynamic call graphs. The ELXSI profiling output includes the standard flat profile results plus the cumu-

lative execution times, the percentage cumulative time, and the cumulative time per call. However, ances-

tor and descendant information is not presented, although it seems trivial to add this to the ELXSI

profiling tool.

2.8. Functionality Summary

A summary of standard UNIX profiling functionality, as represented by prof, gprof and the ELXSI

profiler, is given below.

Measurements

" routine call counts
normally implemented by a prologue to each profiled routine that increments the call
count for that routine, plus records a traversal of the calling arc in the dynamic call graph

"sampled execution time
statistical approximation of routine execution time based on program counter sampling
during program execution - not recommended because of potential for statistical timing
inaccuracies

* measured execution time
direct measurement of routine execution time by recording elapsed time from routine
entry to exit -desired approach for reliable execution time measurements

Profiling Results

* routine call count
the number of times a routine was called during program execution

* descendant call count
the number of times a routine call a descendant routine

e direct execution time
* the time for which a routine is directly accountable -the time spent executing only the

statements in the routine

March 17, 1987
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* percentage direct execution time
the direct execution time expressed as a percentage of the total program execution time

" cumulative execution time
the direct execution time plus the time spent in each descendant routine call

" percentage cumulative execution time
the cumulative execution time expressed as a percentage of the total program execution
time

" average cumulative time per call
the cumulative execution time divided by the routine call count

" descendant cumulative execution time -

portion of cumulative time spent in each descendant routine

" percentage descendant cumulative execution time
descendant cumulative execution time expressed as a percentage of the total routine cumu-
lative execution time

3. Parallel Profiling In Cedar -
-I

The traditional profiling techniques , represented by the UNIX profiling mechanisms presented ear-

ier, are clearly defined and are sufficient for sequentially executing programs. However, profiling of paral-

lei programs is not as well understood, and standard methods are inadequate for the goals of program

characterisation and optimisation. This section analyses the parallel profiling problem in the Cedar sys- Ile

tern. The analysis focuses on how the standard profiling functionality conforms to the Cedar parallel exe-

cution environment. Although parallel profiling undoubtedly has a broader definition, several important

problems appear in this restricted examination. After understanding the sources of these problems, an ini-

tial strategy for profiling in Cedar is proposed. The implementation details of this approach are presented

in Section 4. The discussion of extensions to the initial eprof definition and implementation is given in

Section 5.

3.1. The Baslc Parallel Profiling Problem

The goal of traditional profiling tools is to optimise the performance of a program by improving rou-

tines that implement an abotraction [GKMc82]. Using the routine characterisation of call counts and exe-

cution times, iterative techniques can be applied to integrate excessively called routines or to improve S.

"1%d
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routines that are execution time bottlenecks. Certainly, parallel program profiling has this same optimiza-

tion goal, but the techniques for improving performance are not as simple and require a more complete

characterization of dynamic program behavior. Intuitively, one would expect this to be the case as the

number of possible states of a parallel program are significantly more than those for a sequential program.

Assuming the object of profiling is the routine, how manyf is answered in sequential profiling by rou-

tine call counts, and how long? by routine execution time (direct and cumulative). Little additional infor-

mation is needed to provide an effective characterization for optimization analysis, save a complete routine

execution trace. However, parallel program execution raises the question of with& whom? that cannot be

answered by the standard profiling measurements. Parallel program optimization depends on a useful

characterization of this issue.

3.2. The Cedar Program Execution Environment

Before analyzing the problems of realizing standard profiling functionality in Cedar, we first review

the Cedar parallel execution environment. Two main types of parallelism are available in Cedar: multi-

tasking and loop-level parallelism. A program can be decomposed into several cluster tasks which com-

municate through shared memory. Each cluster task is a separately scheduled entity that executes on a

Cedar cluster. Each cluster contains multiple CEs providing an opportunity for parallelism within each

cluster task. The cluster CEs operate simultaneously during the execution of parallel loops within a task;

iterations of the parallel loop are concurrently assigned to the CEs. Multitasking is provided by the Xylem

operating system at the request of the user, whereas loop parallelism occurs automatically at the

instruction-level.

S When a task executes on a cluster, a fixed number of cluster CEs will always be available to the task.

Thus, parallel execution within a task is synchronous, in the sense that the computing resources are fixed 3 .

Conversely, parallel execution between tasks is asynchronous and dependent on the load in the system. In

In this cuse, concurrent execution is synonymous with parallel execution. The terms "concurrent" and "parallel" are used in-
terchangeably in the paper in this context.

March 17, 1987
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the discussion that follows, only the profiling of individual tasks is considered. That is, each task isr

treated as a separate entity to be profiled. This will help simplify the profiling analysis. We will return to

the question of profiling between tasks in Section 5.

3.8. Standard Profiling in Cedar

Several important parallel profiling problems can be observed by examining standard profiling func-

tionality in the Cedar parallel execution context. First, the object of standard profiling is discussed. An

analysis of call counting and execution timing is then presented.

3.8.1. Routine Profiling

As mentioned before, the object of. standard profiling is the routine. For sequentially executing pro-

grams, this is a reasonable focus; only one routine can be executing at any time and the routine is a logical
%JI

division of computation. Moreover, the characterization of a routine's execution in terms of call counts

and execution times is a direct measure of its performance and its relative importance to the overall com- I.

putation.

P%.

However, parallel program execution implies the potential for more than one routine to be executing

concurrently. Although routine call counts and time measurements are still important, especially when

there is a sizable sequential component, the dynamic interactions that affect parallelism are of equal '

interest. The problem is that the standard profiling measurements do not include any information about

the parallelism present when a routine is executing. The question here is whether new parallel profiling ~ 1

measurements are closely tied with the "routine". Clearly, to identify where in the program an optimiga-%

tion should be applied, there must be some reference point for the profiling measurements. Consequently,

considering the routine as providing a reference framework for profiling measurements might make more

sense for parallel execution environments.

This issue of the "object" of parallel profiling should be given additional thought. For our purposes

in this document, the routine will still be considered as the object of profiling. However, we should be

March 17, 1987
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mindful of this viewpoint when interpreting the profiling results for optimization purposes.

8.3.2. Routine Call Counting

Routine call counting is a simple measurement that is virtually unaffected by parallel execution of

the routine. It can be easily implemented by a call to a counting routine at routine entry. Because a rou-

tine can be called by two or more GEs simultaneously, the routine call count must be locked when it is

incremented. Descendant routine call counts are also simple to obtain.

Although routine call counting poses no real profiling problems in a parallel execution environment,

there is the question of its incompleteness as a single counting measure. Clearly, there are other interest-

ing things to count during parallel execution. For example, routine call counting can be extended to the

number of sequential calls to the routine and the number of concurrent calls. The number of concurrent.

calls could be further divided between calls to the routine when other CEs are also executing and con-

current calls to the same routine.

3.2.3. Routing Execution Times.-

Routine timing is complicated by parallel execution. In sequential execution timing, there are clearly

differentiated time boundaries between direct time for a routine and the time for its descendants. This is

shown graphically in Figure 1. At any time, direct time (indicated by a D subscript in the figure) is being

measured for only one routine. This makes it possible to compute the descendant time and the cumulative

time (indicated by a C subscript) directly from the direct time measurements. In fact, this is exactly the

basis for the approach taken by the ELXSI profiling tool. One can also derive direct execution times from

cumulative time measurements. The different timing relationships are shown in the figure.

The problem that parallel execution poses for profiling is the potential for several routines to be

active simultaneously. If there is a call to various routines within a parallel loop, any combination of these

routines could be active on the multiple execution streams. This is depicted in Figure 2 for two processors.

The different situations that can occur are labeled by numbers in the figure. Each case is described

March 17, 1987
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Sequential Routine Execution Sequential Execution Time

Cumulative Direct

A:------
A IA
A It
A I Dl

----- > B : I I v

I B I I IA B I B
I B I t It It

I B I I IC I C I D

I B I II I
I I v V

IA I I I IA
IA lI I I It

lA I D2
IA I I

v v

A A A
tD tD1 +t2

A A B
tC tD + tc

tA tA _
D = c -

Figure 1. Sequential Routine Execution and Timing

separately below.

There is no concurrency present in region (1). Since routine A is the only routine executing in this

region, the time should be accounted to its direct and cumulative execution time.
-p.

However, at the beginning of region \2, routine A has just entered a parallel loop and processor 1

begins executing iterations of the parallel loop. During region ®, A is executing concurrently with itself.

Herein lies the first timing problem:

Si-.,

'S.. Timing Problem 1i When a routine is executing concurrently with itself, how are direct
time and cumulative time for that routine measured?

The root of this problem lies in the definition of execution time. If execution time in to mean elapsed time,

March 17, 1987
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Figure 2. Parallel Routine Execution and Timing

I

execution time for routine A accumulates whenever A is executing, sequentially or concurrently. If,
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however, execution time means cpu time, the time spent on different concurrent execution threads must be

accounted for in routine A's execution times. Under the elapsed execution time definition, the time associ-

ated with region ) would be added to A's direct and cumulative times. Under the cpu execution time

definition, the time for region © would be doubled because there are two processors operating.

Elapsed execution time measurements are necessary for calculating speedup. On the other hand, cpu

time accounts for the amount of computing resources used by the program and is necessary for utilization

calculations. Both time values are needed for profiling parallel programs. However, depending on the

situation, one or the other time measurements may be difficult to obtain. The poiiat marked by * at the

start of region ©) is a case where parallel operation occurs at the instruction-level in a parallel loop and is

unobserved by the program or the operating system. This makes measurement of cpu time in region (1)

virtually impossible.

It is not until the start of region® that profiling can observe the program executing concurrently.

Region ( ) also has a routine executing concurrently with itself. In this case, each execution thread

represents a separate invocation of routine B. This is different from region ®. Elapsed time and cpu

time measurements are easier to obtain in this case, but there is still the problem of determining direct and

cumulative time. Also, it is unclear what time value should be propagated back to B's calling routine A to

add into A's cumulative time. This represents the second timing problem:

Timing Problem 2t When a routine B is called concurrently from the same calling rou-
tine A, how does B's parallel execution time get accounted in A's timing values?

Throughout region (j), A is executing concurrently with one of its called routines. For instance, A

completely overlaps its execution with the called routine C. The problem here has to do with how time is

recorded - as direct time for A, direct time for C, or both. If the time is direct time for both caller and

callee, adding C's cumulative time to A's cumulative will over-estimate A's cumulative time since A's

direct time is also added. On the other hand, the callee's cumulative time should be accounted for in the

caller's tiue values in some way.

Timing Problem as When a caller and callee routine are concurrently executing, how
9.'-.

March 17, 1987
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are direct and cumulative times being accumulated for the caller and the callee?

Region (® shows the case of two different callee routines executing simultaneously. It is reasonable

that each routine should be accumulating direct and cumulative time. The problem occurs when these .

times are reported back to the caller. Because there is no timing information regarding the overlap of

parallel execution, it is unclear how to incorporate the callee's times into the caller's time values. This

represents the fourth timing problem.

Timing Problem 4z When there is a concurrent execution overlap of two callee routines
(different or the same) from the same caller, how is the overlap time accounted for in the
caller's time values?

Other problems potentially exist having to do 'with routines executing on different execution threads

at different levels within a calling tree. The example above only shows a two-deep call nesting from a sin-

gle caller. It is easy to think of a case where a routine is executing concurrently with itself, but where each .

instantiation was called by a different routine. Again there are the problems of direct time vs. cumulative

time, and elapsed time vs. cpu time.

8.4. A Profiling Strategy for Cedar

Although the simplicity of standard profiling functionality is desired, clearly there are problems with

applying the approaches to a parallel execution environment. However, counting and timing are funda-

mental measurements that will certainly be a part of any parallel profiling tool. The proposed profiling

strategy for Cedar is to define mechanisms for gathering as much potentially useful information as possible

from the execution of the program. In this way, some of the problems encountered earlier can be allevi-

ated by saving profile data for post-analysis and filtering. Although the initial profiling tool, eprof, will

still be routine-based, hopefully, it will provide a flexible framework upon which to design useful profiling ..

extensions. The following briefly discusses the time measurement capabilities in Cedar. Then four routne

profiling situations, for which the initial version of Cedar profiling will be designed, are described. Z

March 17, 1987 i
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8.4.1. Timing Capabilities .

-b
Before defining what profiling data will be kept by eprof, it is important to understand what can and

cannot be measured in the Cedar environment. Timing measurements are of particular interest.

The ctime high-resolution timing facility for Cedar keeps process and task timing measurements

[BELM87]. Execution times are kept for each computing resource on which a task can execute. In particu-

lar, execution times for the cluster are broken down individually for each CE. During periods of parallel * "

operation, execution time can be measured separately on each CE. A more detailed discussion of the dtime ".

facility is given in [Malo87].

Due to the nature of parallelism within a task, profiling is unable to determine when the task goes

from sequential to concurrent operation and vice versa. This situation is indicated by * in Figure 2.

Hence, the amount of time a routine spends in sequential or concurrent operation cannot be accurately

determined. If we consider a single routine with some parallel loops containing no routine calls, only the

elapsed time of the routine can be measured; cpu time, which depends on the level of parallelism, cannot

be measured 4 .

Execution time measurements are easily made at the beginning and ending of routines by inserting r .l,'.

calls to a monitoring routine. In addition, the state of the cluster can be determined at these times; in par-

ticular, whether the cluster is executing in sequential or concurrent mode. Thus, although it is difficult to

detect the change of state from sequential to concurrent, it is possible to determine the state upon entry to

a routine. Different execution times can be calculated for a routine based on cluster state when the routine

is called. For instance, in Figure 2, if concurrent execution is observed upon entering routine C, the -

elapsed time for C's execution can be accounted to the time C is executing when the cluster is operating

concurrently.

4 In this simple case, the elapsed time :a just direct execution time.

%, "
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3.4.2. Routine Profiling Cases

In Cedar, there are four different cases where profiling of a routine might be different. These cases

are distinguished by the state of the task at routine entry and the concurrency in the calling routine at the

time it calls some descendent routine. Again, in this analysis, we are restricting ourselves only to the

profiling of individual tasks5 .

The situation being considered is that of a routine A calling a routine B which calls a routine C.

From A's perspective, A is the "caller" routine and B is the "callee" routine. From B's perspective, B is a

"callee" of some "calling" routine, in this case A, and a "caller" to any routines it might call, for example 1

C. For our discussion, the triple identity of a routine as calling, caller and callee is resolved by defining

these terms with respect to a point of reference. When the reference point is a particular routine, that rou-

tine is labeled the caller routine, the routine which called the caller is the calling routine, and all routines

that the caller calls are callee routines. In our above example, if the referent point is routine B, A is the

calling routine, B is the caller, C is the callee. In the discussion that follows, it is important to understand

how calling, caller and callee routines are identified from the reference routine. ". N

N Two parameters are defined to describe the four profiling cases. Suppose our reference routine is B;

i.e., B is the caller. When B is entered, the task is either in a sequential or concurrent state. This state is
'N

,' called the caller entry state of B. It is important to emphasize that the caller entry value depends on the

state of the task. .

The second parameter depends on the execution state of a routine when it calls another routine. •

Because the only source of concurrency in a task is a parallel loop, a task can be executing only one paral-

lel loop concurrently at any time. This implies that only one routine can be executing a parallel loop con- .

currently at any time. If B calls C while executing one of its parallel loops concurrently, the parameter

callee call is given the value of concurrent; otherwise, callee call is sequential. Notice, if B's caller entry is

The profiling of multiple tasks together is more difficult to imagine. It is briefly touched upon in Section 5. Notice that this 0
m I udes loop spreading which is also not allowed in this analysis.
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concurrent, B cannot execute concurrently. In this case, all of B's callee calls will be sequential'.

The caller entry and the callee call parameters are defined in reference to the caller. The caller looks

at the state of the task when it is entered to determine its caller entry. However, the caller assigns the cal-

lee call depending on the its sequential/concurrent state, not the state of the task7 . An additional parame-

ter, call are, is defined for identifying calling arcs, although it is not needed for specifying the four profiling

cases. It takes on a value equal to the state of the task when the callee is called; i.e., the callee's caller

entry. For example, if the caller-callee arc is B-C, call arc is equal to C's caller entry.

The four profiling cases to consider are:

caller entry callee call comments

sequential sequential 1) concurrency is possible in caller before the call and
after the return, but not at the time of the call

2) concurrency is possible in the callee
3) there is no simultaneous caller-callee execution

sequential concurrent 1) the caller routine is concurrent when the call is made;
i.e. the callee is called from a concurrently executing
parallel loop in the caller

2) there is potential for simultaneous caller-callee execu-
tion

3) the callee must execute sequentially; since the caller is
already executing concurrently, the callee cannot

concurrent sequential 1) since the caller's entry state is concurrent, implying
the caller must execute sequentially

2) since the caller is executing sequentially, all callee calls

are sequential'

concurrent concurrent 1) this case is invalid due to the fact that only one rou-
tine can execute a parallel loop concurrently at any
time

The three valid cases are shown graphically for four processors in Figure 3. Notice that both the

sequential-sequential and sequential-concurrent cases can occur in the same instantiation of a caller

* This may be a source of confusion. Remember that the callee call value is based on the concurrency within the caller routine.
As a test of understanding, notice that the callee call value of B's call to C will not necessarily equal C's caller entry value

from B.

1 This case might be a source of confusion. Keep in mind that when talking about the callee call, we are interested in whether
the calling routine is executing concurrently, not whether the task is necessarily concurrent. N
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routine.

S-S: Sequential - Sequential

The profiling strategy for the S-S case is the least complicated. The elapsed time taken by the callee

call can be computed from time samples taken before and after the call. Because the caller is not execut-

ing simultaneously with the callee, this time can be subtracted 100% from the elapsed time of the caller to

give a better approximation of the caller's direct time. Instead of performing this operation during execu-

tion, the sequential callee call execution time is instead accumulated separately from the caller's elapsed

9"sequential caller entry" execution time

Elapsed execution time for the sequential call arcs are kept. The type of call arc, sequential or con-

current, depends on the state of the task when the callee call is made.

The number of sequential caller entries, sequential calls and traversals of each sequential call arc are

counted. These counts will be kept separately from the associated concurrent counts.

S-C: Sequential - Concurrent

Because the caller entry is sequential, its exit will also be sequential. Thus, an elapsed time measure-

ment for the caller is obtained as before. However, the concurrent calls raise the possibility for simultane-

ously executing routines: caller and callee, or callee and callee. Each concurrent call will take place on

some CE, and each CE can only execute one concurrent call at a time. The elapsed execution time for a

concurrent call is accumulated in the totals for the CE that made the call. Thus, the caller has a separate

concurrent call time total for each CE. The execution time for concurrent call arcs is just a single value; it

does not need to be kept on a per CE basis.

As in the S-S case, the count of sequential caller entries is kept. Additionally, per CE concurrent

callee calls are maintained. Concurrent traversals of call arcs are also counted.

When the caller's entry is sequential, its elapsed execution time is saved as "sequential caller entry" execution time. This is
to distinguish it from the C-S case. Notice, again, that the caller can execute concurrently at other times in the routine. However, it
is not doing so at the time the sequential call is made.
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Sequential-Sequential, Sequential-Concurrent

caller callee

0 1 2 3 0 1 2 3
sequential

caller -------- > A: -

entry sequential callee call
i /

caller *---------> B: - calee
sequential sequential
execution I execution

_ concurrent callee call
caller i /
concurrent . ...-------------- > C: callee
execution I sequential

Ir, I I execution

ii *--------------

I I ,

Concurrent-Sequential
-

caller callee

0 1 2 0 1 2 3
concurrent

caller ----------------- > A: -

entry _ sequential callee call

caller - - --- > B: callee

sequential sequential

execution I execution
• < - - - - - - - - - - -

Figure S. Routine Profiling Situations in Cedar
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C-S: Concurrent - Sequential

q

The profiling strategy here is similar to the S-S case. However, because the caller entry is con-

current, the caller must execute sequentially. A particular CE executes the caller routine plus all its called

callee routines. Therefore, caller elapsed execution time measurement is relative to a particular CE, and is

saved as "concurrent call entry" execution time for that CE. Likewise, the sequential call execution time is

based on the particular CE and is saved as sequential callee time for the CE. As before, the concurrent

call arcs have a single value.

In this case, per CE concurrent caller entries are updated for the caller. Likewise, a per CE count is

designated for the sequential callee calls. As before, only a single count is kept for concurrent call arcs.

3.4.3. Profiling Data .

Based on the above discussion of the different profiling cases, the profiling data kept for each routine Ir

and caller-callee arc are shown below.

Routines %

Counts %

sequential caller entry count
per CE (8) concurrent caller entry counts
sequential callee calls
per CE (8) sequential callee calls (C-S case)
per CE (8) concurrent callee calls (S-C case)

Ezecution Time

sequential caller entry execution time
per CE (8) concurrent caller entry execution time
sequential callee call execution time
per CE (8) sequential callee call execution time (C-S case)
per CE (8) concurrent callee call execution time (S-C case)

Caller-Callee Arcs

Counts

sequential call arc count
concurrent call arc count
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Execution Time

sequential call arc execution time
concurrent call arc execution time

4. Implementation

The initial cprof implementation will support the Cedar profiling strategy discussed in the previous

section. Although gathering as much useful information as possible might make the implementation less

efficient, doing so will help point out inadequacies in the profiling methodology. The goal of the eprof

implementation design, therefore, is to provide a flexible profiling framework for easy modification and

extension.

This section outlines the cprof implementation design. First, the overall design approach is dis-

cussed. The source-level mechanism for profiling implementation, the strategy of profiling data structure

allocation, and the system support requirements are described. The procedures for counting and timing

are then presented'0 . The section concludes with proposals for handling particular implementation issues. A

It is intended that cprof be provided as a compile-time option of Cedar Fortran. Because only

source-level program modifications are allowed in Cedar Fortran, the eprof implementation will be sup-

ported in the Cedar Fortran preprocessor. Some subset of cprof will also be provided to the user for

manual use.

4.1. Design Approach

The general cprof design approach consists of three parts: defining a mechanism whereby profiling

operations at routine entry and exit are possible, understanding the allocation and use of profiling data

structures, and identifying necessary profiling support operations. The details of data structure definition,

counting operations, and timing operations fill out this general design framework.

e All data structures and profiling procedures presented in this document are written in a pseudo-C syntax
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4.1.1. The Facade Routine

The general profiling mechanism will be to replace the textual routi- 'call in the program with a call

to a "facade" routine for the profiled routine. The facade routine will contain a profiling PROLOGUE and

EPILOGUE separated by a call to the profiled routine. For instance, if routine A is to be profiled, all calls

to A are replaced by calls to A's profiling facade A'. A' performs some profiling operations and then calls

A. When A returns to A', A' performs some more profiling operations before returning to the calling rou-

tine. This is shown graphically in Figure 4.

The facade routine should actually be thought of as being defined for a caller routine. However,

some profiling operations in the caller's facade will be on behalf of the calling routine. Likewise, callee

profiling variables defined in the caller's facade will be updated by callee facade routines. With this under-

standing in mind, Figure 5 shows the structure of a caller facade routine that should be referred to for the

remainder of this section.

The most important aspect of the facade routine-base profiling mechanism is that it can be imple-

mented at the source-level by a compiler preprocessor. In fact, this is a necessary requirement for Cedar

Fortran because of the inability to modify the assembly code.

Original Code Profiled Code

caller callee caller callee's facade callee

call A ---- > A: call A' ... > A': <PROLOGUE>
call A ----> A: -

<---- return
<EPILOGUE> < ---- return

< -- return

Figure 4. Facade Routine Mechanism
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Profiling will also include routines for initialization and exit. Profiling initialization is concerned

with allocating appropriate data structures, initializing routine and call arc profiling variables, and setting

profiling parameters. The normal exit routine will be replaced for program with profiling enabled by an

exit profiling routine. This routine is responsible for saving profiling data in a profile output file.

FACADE(< original routine parameters>, <address of calling routine's profiling variables - calling >)

Prologue:

temporary caller profiling variable declarations:

<caller counting variables>
<caller timing variables> 9

Prologue operations:

< determine caller-entry state>
< determine c alle e.call state>
<determine executing CE - zCE>
<prologue counting operations>
<prologue timing operations>

Routine Call:

call ROUTINE(< original routine parameters>, <address of caller's profiling variables - caller^ >)

Epilogue:

epilogue operations:

<prologue counting operations>
<epilogue timing operations>
<lock calling routines's temporary profiling variables>
<update calling routines's temporary profiling variables>
<unlock calling routines's temporary profiling variables>
<lock caller's global profile variables>
<update caller's global profile counts>
<update caller's global profile times>
<unlock caller's global profile variables>

Figure 5. Facade Routine Structure
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4.1.2. Facade Routine Parameters

Given that the facade routine is the only profiling link between two routines, it must be able to

update both caller and calling profiling variables. Updating the caller count and time variables is no prob- .'

lem since the facade routine knows the identity of the caller". However, unless information regarding the

identity of the calling routine is passed to the caller's facade routine, the calling routine's profiling vari

ables cannot be updated. These variables include the calling routine's callee counts and execution times.

The simplest technique is to pass an lED of the calling routine that uniquely identifies it in the pro-

gram. However, only the address of the calling routine's profiling variables are required for them to be

updated. For this reason, and others described below, the address of the caller's profiling variables is

passed to the callee's facade. It turns out that to update the calling-caller call arc profiling variables, the

calling routine's ID is still required. Thus, the calling ID should be accessible to the caller's facade, prob-

ably as part of the calling profiling variables.

Because the original routine is called indirectly through the facade routine, the actual parameters

must be transferred to the routine call. The facade will be called with the original parameters and these

parameters are used to call the routine.

4.1.3. Profiling Data Structure Allocation

Knowing that the current eprof implementation is routine-based, we might allocate profiling vari-

ables globally for the routines and call arcs at the beginning of the program. There are two basic prob-

lems with this approach. The first is performance related. Because eprof intends to profile parallel pro-

grams, it is possible that a routine's profiling variables can be simultaneously accessed by two or more pro-

cessors. Thus, mutual exclusive access to the profiling variables must be implemented to guarantee con-

sistency. Mutual exclusive access is required for a routine's profiling variables during its facade PROLO-
! .

GUE and EPILOGUE, and during every callee's facade PROLOGUE and EPILOGUE. Obviously, there is

the potential for significant mutual exclusion ov4irhead. Some of the overhead can be reduced by allocating

"Remember, we defined the facade routine with respect to the caller.
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profiling variables associated with callee routines locally and updating the associated global variables once
I

during the caller's facade EPILOGUE. V

The second problem with only global profiling variables is that temporary values are required to -.

keep some dynamic profiling values, such as execution time. Allocating and sharing these temporary vari-

ables globally will significantly restrict the degree of parallel profiling in cases where multiple instantia-

tions of certain routines are executing.

The propose solution to the profiling variable allocation problem consists of two parts. Profiling I
values for routines and call arcs representing the current profiled state will be allocated globally. Figure 6

shows the routine and call arc profiling data structures. However, temporary profiling variables are allo- I

cated in the facade routine, when a routine is called, to keep dynamic profiling information. When the i,

routine finishes, its facade EPILOGUE will update the global profiled state of the routine using the tem- P

porary profiling data.

struct routine-profile
{ int s-caller; /* sequential caller entry count */

int c-caller[8]; /4 concurrent caller entry counts */
int sjcallee; /* sequential callee call count */
int cs-callee[81; /* C-S sequential callee call counts */
int c-callee[8]; /4 concurrent callee call counts 4/

TIME s-callert8; /* sequential caller time 4/ a

TIME ccaller-t[8; /* concurrent caller times /

TIME s-callee-t; /* sequential callee time*/
TIME cs.calleeAt[81; /* C-S sequential callee times */
TIME c-calleet[81; /* concurrent callee times 4/

struct calLarc-profile
{ int scallarc; / sequential call arc count 4/

int c-callarc; / concurrent call arc count */
TIME s-callarc-t; /4 sequential call arc time 4/

TIME c-callarcAt; /* concurrent call arc time 4/}

Figure 6. Routine and Call Arc Profiling Data Structures
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This strategy has ramifications on passing of necessary information to the caller's facade routine in

order to update the calling routine's profiling variables. The idea is that the address of the necessary cal-

ling temporary profiling variables will be passed to the caller's facade. Notice that the address of the temn-

porary profiling variables declared in the facade routine must be passed in the actual routine call.

4.1.4. Support Operations

During profiling operation, it is necessary to determine state of the task at caller entry and the state

of the caller when a callee routine is called. It is possible to quickly determine the state of the task by

interrogating the state of the CEs. This will be implemented by an assembly language routine which is

called at the beginning of the PROLOGUE. Calling this routine is all that is needed to determine the

caller entry state. To determine the callee call state of the caller as a callee of the calling routine, the

caller's facade routine must know the calling routine's caller entry state. From the calling routine's caller

entry and the current state of the task, i.e. the caller entry state of the caller, the facade routine can deter-

mine the callee call state. If the calling routine's caller entry is sequential, the ta-k state determines

whether the callee call is sequential or concurrent. If the calling routine's caller entry is concurrent, the

-. call to the caller routine must be sequentia 12.

As described earlier, the etime high-resolution timing facility will be used by eprof for timing opera-

tions. System routines are provided for determining the current time values for all the CEs. Only the user

and system time values are used in the profiling timing operations.

4.2. Counting Operations

The counting events discussed earlier are straightforward to implement. The operations for caller

iientry counting and callee call count are described below. To avoid extraneous locking of the global profile

count variables, all all global updates are done in the EPILOGUE.

SThis use of terms is definitely a source of confusion. it helps to separate the identity of a routine, in the call in g-caller-sWlee
relationship described earlier, from the meaning of the caller entry and callee call states. For example, in the above description, the
calling routine has its own caller entry state. The caller routine also has a caller entry state. It uses the caller entry state of its cal-
ling routine to determine its callee call state.
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4.2.1. Caller Entry Counts 10 ,

The defined profiling counts for caller entry are sequential caller entry and per CE concurrent caller

entry. These counts are incremented only once depending on caller entry. Thus, the only operation that

needs to be performed is an increment update of the appropriate global caller entry count. The caller of

entry count update operations are part of the caller's facade EPILOGUE and are shown below13:

Global Caller Entry Count Update

<lock caller's global profile variables>

if (caller entry == SEQUENTIAL)
<caller global> .s-caller++;

else
<caller global> .c-caller[xCE];

<unlock caller's global profile variables>

4.2.2. Callee Call Counts

The callee call counts are sequential callee call, per CE sequential callee call, and per CE concurrent .e

callee call. Because the caller routine might call several callee routines, caller's callee call counts might be

incremented more than once per caller entry. For this reason, temporary callee counts are declared and

initialized in the PROLOGUE of the caller's facade as shown below.

Temporary Callee Call Counts Declaration and Initialization

0
int s-callee, cs-callee[8], c.callee[81;
LOCK calleelock;

sacallee = 0;
for (i=0; i<8; i+--+)
{ cs-callee[i] 0 0; 0

c-callee[i] = 0;

%}
a.

I <caller global> represents a pointer to the global profiling data structure for the caller routine.

'.

March 17, 1987 -

% ]



26

Notice that the temporary callee call counts defined in a caller routine's facade are actually incre-

) -6
mented in the facade PROLOGUE of the callee routines. Consequently, the caller routine's facade is V

responsible for incrementing the callee call counts for its calling routine. The required operations to

update the calling routine's temporary callee call counts are 1 4

Temporary Callee Call Count Profiling Operations

<lock calling-> calleelock>

if (calling-> caller-entry = SEQUENTIAL)
if(clin- if (caller-entry == SEQUENTIAL)

calling-> scallee++;
else

calling-> cs-callee[zCEI++;
else •

calling-> c-callee[zCE] ++;

<unlock calling-> callee-lock >

Because it is possible to have concurrent routine calls, simultaneous access to the calling routines tern-

porary callee counts can occur. Thus, a lock must be associated with these temporary variables, as shown -

and used above. '-,*.

Although incrementing the caller's callee call counts takes place in the callee's facade, the update of %.p

the caller's global callee call counts occurs in the EPILOGUE of the caller's facade. Notice that in the case

of sequential caller entry, both sequential and concurrent callee calls are possible and, therefore, both must .-.

be updated.

The update operation of the global callee count variables is shown below: . .- --

Global Callee Call Count Update

<lock caller's global profile variables> %

if (caller-entry == SEQUENTIAL)
{ <caller global>.ssallee += s-callee;

14 Keep in mind that the shown operations are described in reference to the caller's facade for updating its calling routine's tern- 0
porary ealie call counts. These operations also take place in the callee routines called by the caller for updating the caller's callee call

co u n ts. ' ,,

%, %t %
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for (i=O; i<8; i++)
<caller global> .ccallee[i] += c-callee[i];

else
for (i=O; i<8; i++)

<caller global> .csscalle [i] += cs-callee [i];

<unlock caller's global profile variables>

4.2.3. Call Arc Counts

The calling-caller call arc counts are similar to the caller entry counts in that they are incremented

only once per caller entry depending on the type of calling arc. No temporary profiling call arc count vari-

ables are required. The increment operation takes place as part of the global call arc update in the EPI-

LOGUE of the caller's facade 8 . The identity of the calling routine must be known to correctly identify

the call arc. The caller entry indicates whether the sequential or concurrent call arc count should be incre-

mented. The call arc count update is shown below'8 :

Global Call Are Count Update

<lock call arc's global profile variables>

if (caller-entry == SEQUENTIAL)
<call arc global>.scallarc++;

else
<call arc global>.c-callarc[zCE];

<unlock call arc's global profile variables>

4.3. Timing

As discussed in the previous section, cprof uses the ctime high-resolution timing facility implemented

in Concentrix. Only the user and system times for each CE are used to compute execution times. Timing

operations exist both in the PROLOGUE and EPILOGUE of the facade routine. In the PROLOGUE, the

caller's beginning time is marked. In the EPILOGUE, the time is again marked and the difference is added

11 Notice that we are here considering the calling-caller call arc. Caller-callee call arc updates are done in the callee facade.

<5 (call arc global> represents a pointer to the global proflling data structure for the calling-caller call are.
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to the caller routine's global caller time depending on the caller entry.

Because the caller is a callee of its calling routine, the caller's facade EPILOGUE must also update

the temporary callee time variables of the calling routine. Which variable is updated depends on the

caller's callee call state. The caller and callee timing operations are described below.

4.3.1. Caller Timing

For each call to a routine, the elapsed execution time of the routine will be measured. As with caller

entry counts, no temporary caller time variable is needed because the time difference between the begin-

ning and ending marks will be added directly to the global caller time values in the update section of the

EPILOGUE. However, temporary variables are needed to hold the beginning and ending time marks.

As described above, the current time is marked as the beginning time in the routine's facade PRO-

LOGUE. The current time is again marked in the EPILOGUE to indicate the ending timQ. Marking the

current time is easily done by a call to the appropriate ctime routine. However, computing the difference

between the beginning and ending times to derive the elapsed execution time depends on the caller entry.

Let us take the easy case first. If the caller entry is concurrent, the caller routine and all of its des-

cendant routines execute on a single CE; in fact, the same CE 17. The caller routine is entered and exited

on the same CE and all elapsed time is accounted to that particular CE. Thus, the elapsed time can be

computed by subtracting the caller beginning time of that CE from its ending time. The elapsed time is

added to the caller's global concurrent caller times for that CE.

If, however, the caller entry is sequential, it is not guaranteed that the entry CE is the same as the

exit CE. This can occur by the execution of parallel loops in the caller routine or in any of its descendant

routines. In this case, the elapsed time is calculated by taking the maximum difference between the begin-

ra.

ning and ending times for each CE' s . This maximum elapsed time is added to the caller's global sequential

11 Notice that parallel loops must execute sequentially because the caller entry is concurrent.

" Because of the way the clime facility is implemented, idling CEs during sequential operation are charged user time. There-
fore, one might assume that it would not matter which CE was chosen for computing elapsed time. However, because overhead and

-\ kernel time are also kept for each CE, the individual CE time differences can be different.
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caller time. a-

The temporary declarations and operations for caller timing are shown below:

Caller Timing Operations %

PROLOGUE:
TIME begin-mark, endjnark, elapsed;

get-current-time(beginjnark);

EPILOGUE:
get-current-time(end.mark);
if (caller-entry == SEQUENTIAL)
{ <determine CE with maximum time difference>

<save this difference in elapsed time variable>

else
{ <calculate time difference for CE zCE>

<save this difference in elapsed time variable>

<lock caller's global profile variables>

if (caller-entry == SEQUENTIAL)
<caller global>.s-callerA-t-= elapsed;

else
<caller global>.c-callert [zCEI += elapsed;

<unlock caller's global profile variables>

4.3.2. Callee Timing

Callee timing is really not much more complicated than callee counting. When a routine is called, it

is both a caller to any routines it might call, as well as, a callee to its calling routine. We are interested

here in its role as a callee. In this respect, the routine's facade is responsible for updating the callee

profiling variables of its calling routinelo. It turns out that the elapsed time value computed above for the

routine's caller timing is exactly the time value required for updating the callee time of its calling routine.

The difference, however, is that the choice of which callee time to update depends on the caller's callee

entry, as was the case in the callee counts.

a It is also responsible for the call arc timing to be described later.
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Temporary callee time variables must be declared in a routine's facade because several callee routines

might be executed. Because of the possibility of concurrent routine execution, the callee lock, defined

above for callee call counts, must be used to guaranteed mutual exclusion when the caller's facade per-

forms the callee time update of its calling routine.

Thus, assuming that the elapsed caller time has been computed in a caller's facade EPILOGUE, as

shown above, the callee time update operations for the calling routine are:

Temporary Callee Time Profiling Operations

<lock calling-> calleeJock>

if (calling-> caller-entry =- SEQUENTIAL)
if (callerentry == SEQUENTIAL)

callin->s-callee-t = elapsed;
else

calling-> cs_callee_t[zC1 = elapsed;
else

calling-> ccalleet[zCE = elapsed;

<unlock calling-> calleeiock >

The update operation of the caller's global callee time variables is shown below:
f.
€..

Global Callee Time Update Operations

'.

<lock caller's global profile variables>

if (caller-entry == SEQUENTIAL)
<caller global>.scallee-t +-= o-callee_t;
for (i=O; i<8; i+ )

. "-r global>.cscalleet[i] += c-callee-t[i];

4. else
for (" ; i<8; i++)

<caller global>.cs-calleeAt[i] + cs-callee.Jt[i];
4.,

<unlock caller's globai rofile variables>

c 1'1
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4.8.8. Call Arc Timing

The call arc times are a measure of execution time spent between the calls and returns along call 1

arcs. Obviously, the time for a particular call arc traversal is the elapsed execution time of the called rou- 'p

tine. The call arc time is accumulated in the global call arc time for the calling-caller pair. This occurs as

part of the call arc update in the EPILOGUE of the caller's facade. The identity of the calling routine

must be known to correctly identify the call arc. The caller entry indicates whether the sequential or con-

current call arc time should be incremented. The call arc time update operations are shown below assum- '
S

ing the elapsed time has already been computed:

Global Call Arc Time Update Operations

<lock call arc's global profile variables>

if (caller entry == SEQUENTIAL)
<call arc global>.sscallarct += elapsed;

else
<call arc global >.ccallarc_t[xCE +-= elapsed;

<unlock call arc's global profile variables>

4.4. Implementation Issues

The profiling operations described above give the general implementation strategy for the initial ver-

S.
sion of cprof. However, particular implementation issues must be addressed before an implementation can

be realised. Two are discussed below, although, in actuality, there are many such issues.

4.4.1. Timing, Recursion, and Concurrency

When determining the elapsed time for a routine, any computation between the entry and exit of the

routine is included in the elapsed time value. At exit, the elapsed time is added to the overall execution

time of the routine. However, if the routine is called recursively, directly or indirectly, the exit from the

recursive call will result in the elapsed time of the recursive call being added to the routine's overall execu-
V

tion time. When the outermost call to the routine finally exits, it too with update the overall execution
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time with its elapsed time which includes the elapsed time of the recursive call. Hence, the elapsed time of

the recursive call is counted twice in the routine's overall execution time.

To avoid this problem, the ELXSI profilers keeps a count for each routine of the number of times the

N routine has been entered but not exited; i.e. the recursive call level. If a routine is called recursively, the

profiler notices that the entry count is > 1 and avoids updating the overall execution time at recursive exit.

However, this is the only operation that is not executed. The elapsed execution time of the recursive call

must still be reported back to the caller.
.j

In eprof, the recursion timing problem is exacerbated. If the task is executing sequentially when a

routine is called recursively, the technique described above for timing recursive calls will work fine. The

complication occurs when different execution threads call the same routine. In some cases, the calls are

treated as concurrent calls to the same routine. In other cases, the calls should be regarded as recursive

-. calls. Identifying when a call to a routine during concurrent operation is a recursive call or a concurrent

call is at the heart of the problem.

A concurrent call to the same routine is one where two or more execution threads, i.e. two or more

CEs, call the same routine and are simultaneously entered in that routine. Generally, the timing of con-

current calls to the same routine slips nicely into the existing eprof profiling operations. Each separate call

computes its own elapsed execution time and updates the overall routine execution time value for the CE

a. executing the call. If, however, a particular CE calls the routine recursively, this recursive call should be

recognized even though concurrent calls may exist. As before, the execution time for the recursive call

should not be added into the overall execution time for the routine for this CE.

4. The problem is how to recognize a concurrent call from a recursive call in the routine's facade so

that the correct overall execution time update can occur. The proposal is to extended the standard solu-

tion to maintain a separate entry count for each possible execution thread entry; e.g., given 8 CEs, 8 entry

counts are defined for a routine - one for each CE. At entry to the routine's facade, the CE is identified

and the entry count for that CE is incremented. Before updating the routine's overall execution time, the

-, facade checks the appropriate CE entry count to determine it this was a recursive call. If not, the overall
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execution time can be updated. 4%

It is desired to have the procedure described above work for both sequential and concurrent opera- %

tion. However, there are few minor complications that must be resolved. First, it is possible for a routine

to be entered sequentially on one CE and exited on another. This is due to concurrent operation within

the routine or one of its descendants. If the routine is called recursively, the facade entry increments the

entry count of the entering CE but the facade exit decrements the entry count of the exiting CE. Notice "

that this problem cannot occur when the routine is entered concurrently, though a similar problem does
I

occur. If the routine had been previously entered sequentially, when the routine is recursively entered dur-

ing concurrent operation, it might not be executing on the same CE as the one that entered it sequentially.

The different recursive call situations that can occur are shown graphically in Figure 7 and 8 The

first case obviously works with our proposed strategy. The recursive call facade entry will be recognized

and the update bypassed at recursive call facade exit. The second case has noticeable problems because of %

the recursive call exits on a different CE. It the proposed strategy is applied literally, just before the recur-

sive call exit, the entry count is 2 for CE 0 and 0 for CE 1. When the facade interrogates the entry counts

at exit, it sees an invalid value for CE 1.

The solution for the above problem is the same as the solution to case three. Here a recursive call

enters on a different CE. The entry counts at this point are 1 for CE 1 and 1 for CE 2. Thus, the facade

observes no recursive entry. To solve these two problems, the following policy is adopted. The facade of a

routine called sequentially, i.e. the task is sequential, will increment all CE entry counts at entry and

decrement all CE entry counts at exit. Notice that this solution is still consistent with the first case.

The fifth case, Figure 8, poses no problem for the recursion detection strategy. This is similar to the

normal case one because only the execution trace of one CE is being considered for recursion. Thus, each

separate CE execution thread is deciding whether routine calls along that thread are recursive.

The fourth case is the worst of all. A routine is called recursively along different execution threads.

Notice that if the calls were not concurrent, as shown here, the case would degenerate into case three.

However, the simultaneous recursive execution suggests a different state of operation that maybed requires
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CE CE
0 1 2 3 0 1 2 3

non -recursive
sequential---------- > A: -

call recursive sequential call

------------ > A: 19 normal case

recursive sequential call

- - - -- - - - - - - - - -> A :

1 02 recursive
----- ---- call exits on

I I I I different CE"

-recursive concurrent call

I ~ - I----------->A: - (3) recursive

I I Icall enters on
---------------- different CE

I~~~ I --- - - - A: - R~)concurrent

SI---------- >A:- I recursive

I ------------- - calls on
I Idifferent CE's

Figure 7. Recursive Call Situations - Non-Recursive Sequential Entry
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0 1 2 3 0 1 2 3 - .

non-recursive'"-
concurrent -- - - - - - - -> A: - ' -
call _recursive concurrent call .

-------------- > A: 05 similar toL.

n ormal i2
*< ----------------- situation

Figure 8. Recursive Call Situation - Non-Recursive Concurrent Entry

a different type of timing analysis. However, the proposal for this situation is to equate it with the third .

case, essentially disregarding the concurrent overlap of execution. Otherwise, yet another set of variables

to time this particular case would be required.

4.4.2. Selected Profiling

Currently, the profiling implementation approach using the facade routine requires every routine

that calls a profiled routine to itself be profiled. Although the approach does allow a user to ignore low-

level routines in the profiling analysis, the ancestral profiling restriction can be cumbersome. The basic

problem is one of transferring profiling information from a profiled ancestor to a profiled descendant

through the arguments lists of routines along the call arcs. These routines must necessarily be modified to

perform the appropriate parameter passing operations.

Future eprof implementations might discover a better mechanism for capturing entry and exit from

profile routines, other than the facade approach. The current restriction to this effort is the fact that the

compiler can only make source level transformation. However, other schemes are currently being investi-

gated.

%
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A 5. Extensions

This section briefly describes extensions of the initial version of cprof. As stated earlier, parallel pro,

4 gram profiling offers a much larger domain of potentially interesting analysis than sequential profiling. A

particularly powerful profiling mechanism is tracing. Several different types of measurements can be

obtained in this manner. After discussing the capabilities of tracing, extensions particular to inter-task

profiling in Cedar are described. The implementation design of the profiling extensions outlined in this

section will be specified in future reports.

5.1. Tracing

The basic idea behind tracing is that at certain points during program execution, various values are

'e, written to a buffer, possibly time-stamped, so time-ordered program behavior can be observed after execu-

tion has completed. Anything can be designated to be a part of the trace output. This makes tracing a

powerful mechanism because virtually any other type of profiling scheme can be realized through tracing.

For example, all eprof profiling values described in the preceding sections can be reproduced from a

* sufficiently detailed trace. The problem with tracing is its appetite for storage; traces can become very

large very fast. Appropriate uses of tracing identify particular parameters of interest that can be recorded

* efficiently in a reasonably-sized trace buffer. Several possible tracing tools for Cedar are discussed below.

A particularly interesting idea, especially for parallel programs, is the generation of a dynamic rou-

tine call graph showing the order in which routines are executed, the times routines are entered and exited,

and the routine execution activity on the different processors. Essentially, the trace consists of time-

stamped routine entry and exit events showing the name of the routine and the CE executing the routine.

Obviously, some of the information gathered in the profiling operation described earlier would appear in

*the trace. Instead of writing the pr,' g information to the global and temporary profiling variables,

however, the data is written to a trace buffer"0 . From the trace output, the dynamic routine call graph is

SThe trace buffer is necessarily an internally defined array of storage. Clearly, an external trace file would significantly in-
';. trude on the program's operation.
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Clearly, there are situations where the dynamic execution trace described above will take too much V

storage. There are several ways to remedy this situation. First, not all routines need to be trace; the user

can selectively choose which one to monitor. Second, some of the trace data may be unnecessary. For

instance, to just observe routine call sequence or concurrent routine execution overlap, the time-stamp can

be removed. Another efficiency measure might be to encode some of the trace data or use difference time-

stamping.

Traces do not have to be routine-based. As indicated earlier, concurrent program execution is some-

PNXtimes inadequately measured by routine call counts and execution times. Part of this has to do with the

limitations of detecting concurrent operation in the Cedar machine. However, if this could be done, trac-

* ing might provide a nice interface for observing concurrency during the program's lifetime. Only those

% points where changes in the concurrency level occurs would need to be traced.

A possible implementation approach for tracing is to provide a general tracing mechanism that

inserts trace code at various places in the program. The user specifies the type of trace data to be collected-

~C. and where tracing should occur. Initial versions of a tracing tool will support particular types of tracing

like dynamic routine call or concurrency tracing.

5-. 5.2. Inter-Task Profiling

The Cedar machine supports multitasking of parallel programs. All of the preceding profiling discus-0

sion has been directed towards intra-task profiling. The reason for this was partly to remove unnecessary

complexity from the explanation of the profiling operations. There are also certain fundamental measure-

ment issues that do not lend themselves to the implementation employed for intra-task routine profiling.

The following briefly analyses the general problem of inter-task profiling. Some ideas for profiling tools to

capture interesting inter-task behavior are then described. It is assumed that the reader has knowledge of

how multitasking works in the Cedar system.
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There are two basic problems with inter-task profiling. The first is timing between tasks. Although
-i

an elapsed program time, called process time, is maintained by the ctime timing facility, it cannot be used

to time events within a task. If a task bases all of its timing operations on the process time, it cannot

separate the time spent actually running on a cluster from the time spent waiting to run. This is due to

the fact that tasks are independently scheduled in the Cedar system. Hence, all profiling timing operations

described earlier must be done with the task times.

The second problem concerns observing concurrency across tasks during program execution. Because -S
tasks can execute on physically separate clusters, determining if two or more tasks are concurrently execut-

in rqure smeform of glblcommunication and mntrg.Unfortunately, this feature cannot be :

provided just through program modification; support from the operating system is required.

nonr c

The above problems imply a basic inability to extend the low-level intra-task profiling approach

across tasks. However, there are several interesting measurements that cannot be derived from the low-

level data that can be obtained with higher-level inter-task profiling operations. Mostly, the events of

interest regard task creation, task execution, task synchronization, and other task related functions. The ...

following considers a general type of inter-task profile and adds to it in a couple of ways to show varia-

tions on the same idea.

Suppose we want to produce an program task execution graph similar to dynamic routine call graph

described above. Generally, the task execution graph shows events related to task execution. These task

events are recorded in a program trace and include the type of event, the time of the event, and other

related information. Because the program execution trace must be ordered with respect to a single pro-

*-. gram time, the process time should be used for time-stamping all events2 1 .

Most task events are identified by -he task operations provided by the Cedar Fortran run-time •

library and the Xylem operating system. For instance, an event could be defined for the Cedar Fortran

function ctskstart that includes the time the new task is created and the number of processors requested.

2 Notice that there is no problem using process time in this manner; only a time-stamp is being recorded, not an elapsed time
value.
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A ctskwait event might record the time the wait began and the task being waited on. Another type of

ctskwait event could record the time the when the suspended task continues. The Xylem multitasking

system calls, create-ctask, deletectask, queue-ctask, resumectask, start-ctask, stop-ctask,

suspend-task, and wait-task, also map to obvious task events. A program task execution graph show-

ing the occurrence of these events during program execution is useful for identifying the number of active

tasks and waiting relationships.

Defining events for Cedar synchronization operations further increases the capabilities of the inter-

task profiler. Identifying synchronization in the program execution graph is important because it shows

dependencies within the program that can limit parallelism. The events should not only indicate the type

of synchronization and the time it occurred, but also the task identity, the synchronization variable, and

the outcome.

Because of the independent scheduling of tasks, the process time time-stamps recorded by the pro-

gram will be affected by the task scheduling. A task can be context-switched between two time recordings

of the process time. Looking only at the two time-stamps, the amount of time the task actually spent exe-

cuting between these two events cannot be determined. If, however, the process times when the task is

context-switched and when the task resumes execution are recorded in the program trace, the interval exe-

cution time can be determined. Although this time can also be calculated using only the individual task's

times, what cannot be observed is the task's execution relationship with the other tasks. The problem is

that task context-switch and task resume times must be recorded by the operating system.

Assuming the operating system is able to provide the necessary task timing functions, several

interesting inter-task profiling analyses can be obtained for the program execution trace. For instance, the

task concurrency present during the program's lifetime can be observed. This information may be able to

shed some light on reasons for the programs' achieved performance. The trace can also show the effects of

synchronization on task waiting and suspension. Again, certain problem areas might be more readily

identified.
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1. . A particularly interesting analysis, tentatively called program flow trace analysis, uses the task syn-

chronization and execution information to construct a "minimum-time" program execution graph. The

analysis attempts to remove any task scheduling effects due to Cedar multiprogramming, making it appear

as if the program had the entire machine to itself. The resulting program execution graph is a maximallyI compressed version of the original trace such that all inter-task dependencies, based on the synchroniza-
* tion event trace information, remained ordered in time. Thus, the execution flow trace graph shows a

minimum-time in the sense that extraneous delays caused by tasks being context-switch, for reasons other

than task synchronization, are removed. Obviously, the analysis gives only an approximation of execution

on a single-user machine. However, it will be definitely be useful for estimating poor performance due to

system load and inter-task dependencies.

March 17, 1987

*J~ ~~~~ ~~~ ~ ~~~ %, d ~ CS C p ., ~ 4 ' .



41

References

[BELM87] R. Barton, P. Emrath, D. Lawrie, A. Malony, R. McGrath. New Approaches to Measuring Pro-

cess Execution Time in the Cedar Multiprocessor System. CSRD Report #744, Jan.

1987.

[Carr86] D.A. Carrington. Profiling Under ELXSI UNIX. Software - Practice and Experience, Vol.

16, No. 9, pp. 865-73, Sept. 1986.

[GKMc82] S.L. Graham, P.B. Kessler, M.K. McKusik. gprof: a Call Graph Execution Profiler. Proc. SIG-

PLAN '82 Symp. on Compiler Construction, SIGPLAN Notices, Vol. 17, No. 6, pp.

120-26, June 1982.

[GKMc83] S.L. Graham, P.B. Kessler, M.K. McKusik. An Execution Profiler for Modular Programs.

Software - Practice and Experience, Vol. 13. pp. 671-85, 1983.

[Malo86] A.D. Malony. Virtual High Resolution Process Timing. CSRD Report #616, Oct. 1986.

[Malo87] A.D. Malony. The CTIME User's Manual, Feb. 1986.

[UNIX84] UNIX User's Manual. 4.2 Berkeley Software Distribution, Univ. of California, Berkeley, March

1984.

March 17, 1987

-p
t

-If°



~.F
1'

1%

'N
'N

#3~

1Vjq

'pa.

5%
5..

(I.

'.1'

.5.

.5.

.5.

5,

5..
*5W

a
'S.. 1 5..

5'

'5

I

J


